
UUNNIIVVEERRSSIITTÉÉ AANNTTOONNIINNEE
Faculté d’ingénieurs en Informatique,

Multimédia, Réseaux et Télécommunications

Course: Méthodologie de recherche

 Presented by:

Copyright © 2010-2011, eliematta.com. All rights reserved

MATTA Elie et al.

Scientific Approach of RSS Join Engine

http://www.eliematta.com/

Scientific approach of
RSS Join Engine

Copyright © 2010-2011, eliematta.com. All rights reserved

1

1 Semantic relatedness is a more general concept than similarity. Dissimilar entities may also be semantically related by lexical

relations such as meronymy and antonymy[2].

AAbbssttrraacctt

RSS feeds presents the main source of news for internet users, therefore it would be
important and beneficial to join such XML-based system to improve several issues such
as eliminating duplicated RSS feeds. In this paper, we will follow the 6 step scientific
approach [1] to elaborate our ―RSS Join Engine‖. We conducted our approach trying to
explore this relatedness between RSS titles using a specific framework that loads user-
specified RSS feeds and then joins them based on a precision value. Finally we
provided a series of experiments to validate our approach.

11.. PPrroobblleemm SSttaatteemmeenntt

RSS (Really Simple Syndication) is an easy and simple way to communicate

information to a subscribed user from multiple data sources (i.e. RSS feeds from CNN

and BBC) that satisfies a certain condition given by the users (i.e. Category, time

interval, etc.).

Wouldn’t it be a waste of time and resources for the user to read the same information

more than once?

22.. BBaacckkggrroouunndd rreesseeaarrcchh

To resolve our problem, we divided our research into 2 parts: theoretical and practical.

In the theoretical part, we started our search on XML similarities since RSS is an XML-

based system.

First we discovered that there are several types of relations between different feeds:

1- Disjointness, when there is no relatedness whatsoever between the 2 feeds.

2- Inclusion, when a feed is totally included in another.

3- Intersection, when 2 feeds refer to similar and related concepts.

4- Equality, when 2 feeds are identical.

5- Oppositeness, when 2 feeds are opposite but refer to the same issue.

These relations are calculated upon certain semantic relatedness1 using a knowledge

base (i.e. WordNet).

We will detail in this paper, 2 main concepts for calculating this similarity.

In [3] Aminul Islam et al. presented three functions to calculate similarities between two

sentences: string similarity, word similarity and text similarity.

Scientific approach of
RSS Join Engine

Copyright © 2010-2011, eliematta.com. All rights reserved

2

The string similarity works only on the shape/syntax of the sentences, for example let us

consider a pair of texts, T1 and T2:

T1: Many consider Michael Jordan as the best player in basketball history.
T2: Michael Jordun is one of the best basketball players.
The only difference between the two texts is the misspelled word ―Jordun‖ in T2.
The semantic based value between these 2 words: Jordan and Jordun, is very low if
there are any, but on the other hand, if the string similarity measures are used, we
obtain a good similarity score. This is the main importance of the string similarity.

The semantic word similarity can be based on one of many word-to-word similarity
metrics like distance-oriented measures computed on semantic networks, knowledge-
based (dictionary/thesaurus-based) measures, or metrics based on models of
information theory (or corpus-based measures) learned from large text collections. We
will focus on the corpus-based measures because of their large type coverage.
By using the Sim() function, they normalized the semantic word similarity, so that it
provides a similarity score between 0 and 1 inclusively. For example the function returns
0.986 for words cemetery and graveyard.

The semantic text similarity shows its main important when 2 texts contains the
common words which will lead us on how similar the order of the common-words is in
the two texts (if these words appears in the same or almost the same order, or very
different order).
Considering the same example T1, T2 and after removing the non-common words, we
will obtain vector X={Michael, Jordan, the, best, player, basketball} for T1, and vector
Y={Michael, Jordan; the, best, basketball, player} for T2. We replace X by assigning a
unique index number for each token in X = {1, 2, 3, 4, 5, 6}. Based on this unique index
numbers for each token in X, we also replace Y where X = Y. That is, Y = {1, 2, 3, 4, 6,
5}. The function in this case will return 0.83.

As an overall semantic similarity, our task is to derive a score between 0 and 1

inclusively that will indicate the similarity between two texts P and R at semantic level.

The main idea is to find, for each word in the first sentence, the most similar matching in

the second sentence. The method consists in the following six steps mentioned in [3].

For example let P = ―A cemetery is a place where dead people’s bodies or their ashes

are buried.‖, R = ―A graveyard is an area of land, sometimes near a church, where dead

people are buried.‖ Then S(P,R) = 0.514 where S is the function of this six step method.

On the other hand, Richard Chbeir et al. [4] created a framework for merging RSS items

that consists of 4 main modules:

1. Pre-processing module: It accesses the internet and downloads corresponding

RSS feeds, checks their well-formedness then returns them to the next module.

2. Relatedness module: Accepts the list of items given and computes

text/element/items relatedness by accessing a knowledge base (KB).

Scientific approach of
RSS Join Engine

Copyright © 2010-2011, eliematta.com. All rights reserved

3

2 Every user is allowed to specify the notions of merging by associating relations between elements and merging operators.
3 That could exploit VKB and LKB in identifying label/value neighborhoods.
4 Granularities that could be like text, label, simple element, and item (complex element).

3. Clustering module: Facilitates the merging process by using the existing

clustering algorithm that groups highly intersecting news in the same cluster

disregarding item relationships.

4. Merging module: Uses the output of the preceding module in order to abridge

grouped element according to predefined merging rules and user preferences2.

In this study, it’s mentioned that existing clustering algorithms put together highly

intersecting news in the same cluster disregarding item relationships. For instance,

news items related with the intersection relationship and having lesser similarity score

are put in different clusters according to their scores, although these items should be

put together in the same cluster. As a result, a Relationship aware Single Link Level

based or RaSL2 is presented.

Now that we presented the concepts of calculating the similarities, it’s obvious that we

need to put unbounded data streams coming from multiple data sources in a bounded

memory.

This is done by using the sliding-window concept that offers us 2 types of windows:

count-based sliding-window that contains the last T items (feeds) or a time-based

sliding-window that contains items that have arrived in the last t time units [5].

Due to the continuous changes to the content of the windows, we found 2 possible

strategies to keep the result updated with the changes. An eager re-evaluation strategy

generates new results after each new tuple arrives but may be infeasible in situations

where streams have high arrival rates. A more practical solution is the lazy re-evaluation

is to re-execute the query periodically [5].

On each entry of a new tuple k a test should be done on each existing tuple having the

following condition: ― ∀ u ∈ S1 and k.ts – T1 ≤ u.ts ≤ k.ts ‖ / S1 is a window, k.ts is the

timestamp of the tuple k and T1 is the time size of the S1 time-based window. Every

tuple u that doesn’t match the condition will be exiled from the window.

And now the join process between the windows will begin using a certain join process

algorithm like the NLJ (Naïve Multi-Way Join) algorithm.

In the practical part, our main objective is to find an application that responds to our
project that is to aggregate and join RSS feeds using the conditions given by the user.
As a result we found ―RSS Merger‖ [4], a C# desktop prototype. This prototype accepts

as input RSS news items, as well as Boolean input parameter allowing the user to

choose whether to consider data semantics3 or not. It measures relatedness between

news items automatically after (i) stemming text values, (ii) generating vectors for each

text, (iii) computing relatedness and relationships at different level of granularity4.

Scientific approach of
RSS Join Engine

Copyright © 2010-2011, eliematta.com. All rights reserved

4

It clusters the RSS items based on the relatedness value and finally merge the news

based on the users merging rule.

We also found two types of software, XML comparators, and RSS aggregators that
could be helpful later in this project.

As for the XML comparators, we found codes that compare 2 XML documents; we also
found multiple free applications that highlight the differences between 2 files. In some of
them we were able to edit the XML document directly from the software, but in others
this action is not possible. Here is a list of the software found:
BeyondCompare, ExamDiff, ExamXML, CompareIT, Compare and Merge…etc

As for the aggregators we found that there are many different RSS aggregators on
today’s market. They differ in many details like complexity, appearance, functionality
etc. However all these programs have one in common—they handle RSS.
Below there are listed examples of RSS aggregators [6, 7]:

R
S

S

a
g

g
re

g
a

to
r

(a
)

A
p

p
lic

a
ti
o
n

ty
p

e

(b
)

D
a
ta

b
a

s
e

(c
)

O
P

M
L

/B
lo

g
ro

ll

(d
)

F
e
e

d
 u

p
d
a

te
s

(e
)

X
M

L
 F

o
rm

a
ts

(f
)

F
e
e

d
s

(g
)

E
x
te

n
d

ib
ili

ty

(h
)

O
S

 I
n
te

g
ra

ti
o

n

(i
)

A
J
A

X

(j
)

A
P

Is

1. Active Web Reader 2,4,5 1,2 1,3 1 1 3

2. Amphadesk 3,4,5,6,7,8 2 1,2 1 2,3 1 1,2,3

3. BlogLines 4,5,6,7,8 1,3,4 1,2,3 1 1,2 1,2,3 1 2

4. FeedReader 3,4 4 1,2,3 1,2 1,2 1,2 1 1,2,3

5. FeedDemon 3 1,2 1,2 1

6. NewsGator 3 1,2 1,2 1 4

7. SharpReader 3 1,2 1,2,3 1,2 2 1

8. Snarfer 3 4 1,2 3 1,2 1,2 2,3 3 2

9. Gregarius 4,5,6,7,8 1,2,4 1,2,3 1 1,2 2 1,2,3 1,2 2

10. MonkeyChow 4,5,6,7,8 1,3 1,2,3 1,2,3 1,2 1

11. NewsBeuter 3 4 1,2 1,3 1,2 1,2,3 1 2

12. Composite 3 2 1,3 1 1 1 2,3

13. RSS bandit 3 1 1,2,3 1,2,3 1,2 1,3 1,2,3 1 1,2,3 1,3,4

14. RSS Owl 3 1,2,3 1,2,3 1,2 3 1 1 3

Figure 1: List of RSS Aggregators

http://www.softwaregeek.com/download/beyond_compare.html
http://www.prestosoft.com/ps_download.asp?file=ed18_setup.exe&prod=ed
http://www.topshareware.com/ExamXML-download-7704.htm
http://www.softwaregeek.com/download/compare_it_.html
http://www.softwaregeek.com/download/compare_and_merge.html
http://www.deskshare.com/awr.aspx
http://www.disobey.com/amphetadesk/
http://www.bloglines.com/
http://www.feedreader.com/
http://www.newsgator.com/Individuals/FeedDemon/Default.aspx
http://www.newsgator.com/
http://www.sharpreader.net/
http://www.snarfware.com/
http://www.gregarius.net/
http://sourceforge.net/projects/monkeychow/
http://www.newsbeuter.org/
http://www.jelovic.com/rssaggregator/
http://www.rssbandit.org/
http://www.rssowl.org/

Scientific approach of
RSS Join Engine

Copyright © 2010-2011, eliematta.com. All rights reserved

5

(a) 1: Outlook plug-in, 2: Browser plug-in, 3: Desktop application, 4: Hosted on a
server and is controlled with a web browser; Works in the following browsers: 5:
Opera, 6: Safari, 7: Firefox, 8: Internet Explorer

(b) 1: Hosted website, 2: Requires user setup, 3: Shared database, 4: Full text
database search

(c) 1: OPML import, 2: OPML export, 3: Blogroll capable
(d) 1: Scheduled feed updates, 2: Individual feed update, 3: Refresh single feed
(e) 1: Reads RSS 2.0, 2: Reads ATOM
(f) 1: Feed recommendation, 2: User suggested feeds allowed, 3: Search for feeds

option
(g) 1: Open source, 2: Has user plug-ins, 3: Has user themes
(h) 1: Has desktop notification system
(i) 1: Asynchronous tagging, 2: Asynchronous marking read, 3: Asynchronous

retrieval items
(j) Supports 1: Dave winers aggregator, 2: Bloglines, 3: Google aggregator, 4:

Newsgator, 5: Microsoft RSS platform

33.. AAddoopptteedd ssoolluuttiioonn

As a result of the background research done earlier, we were unable to find a result to

our problem, which is to join RSS feeds from several sources and return the result. We

only found RSS aggregators and XML comparators. These software as their name

mention, are able only to collect RSS feeds (aggregator) from given RSS sources and

list them to the user, the XML comparators compares XML files and highlights the

difference between them.

In the remainder of the paper, we will try to create an RSS join engine, based on the

existing work while developing the function of joining the RSS feeds based on the

semantic relatedness.

The main idea of the project can be presented in the following figure:

 2 4

 3

 1

Figure 2: RSS Join Engine framework

Internet

RSS

Provider

RSS

Collector

WorldNet

KB

RSS

Comparator Result

Scientific approach of
RSS Join Engine

Copyright © 2010-2011, eliematta.com. All rights reserved

6

1: The RSS Collector will connect to the internet to find the RSS providers and

download the RSS title.

2: The RSS Collector will accept the given titles and will try to group them by category

(Sports, Business, Economy…).

3, 4: The RSS Comparator will take the grouped titles and compare them to get the

semantic relatedness using the WorldNet database, once it’s done, it will give the output

and the result.

Our program will be based on these functions:

function GetRSS(): this function will return the titles of the RSS from the given RSS

source(URL), and list them in a listbox. It will also be automatically re-executed in a

given lapse of time to keep the user updated with all the new RSS feeds.

function JoinRSS(): this is the main function of the engine, it will connect to the

WorldNet KB to be able to compare each title and then tries to join existing RSS feeds

in the listboxes, finally it will throw the result of the join process in another listbox.

function GetRSS()

 Check(URL)

 if(Check)

 Connect(URL)

 Collect(URL)

 else

 “Display Error Message”

 end If

end Function

function Group(RSS): this function will group the incoming titles by type (for example

Sports)

function Check(URL): this function will check the availability of the given url, and if it

really contains RSS feeds. It will return true if not false.

function Connect(URL) : this function will use the internet connection to connect to the

given URL

Scientific approach of
RSS Join Engine

Copyright © 2010-2011, eliematta.com. All rights reserved

7

function Collect(URL) : once connected, this function will collect all the titles from the

source and show them to the user, while implementing in the same time the

Group(RSS) function

function Comp(title1,title2)

 Open an instance on WorldNet Knowledge Base

 Compare each title with the other one using semantic relatedness measures

(xSim,…)

return the Comparison as type (inclusion, intersection, oppositeness, disjointness

or equality)

function JoinRSS()

 Comp(title1,title2)

 If Comp = Disjointness then

 Show both titles

 end If

 If Comp = Equality then

 Show one of the titles

 end If

 If Comp = Intersection then

 If one of the titles is totally included in another (Inclusion) then

 Show the title including the other title

 else If one of the titles is intersection with another but the content is

referring to opposite meaning (Oppositeness) then

 Show both titles

 else

 Show the intersection of one of the titles

 end If

end function

44.. TTeesstt hhyyppootthheessiiss

 After developing the pseudo code into an executable one using C# .NET, and due to

the lack of RSS Join engines, we found ourselves obliged to put our solution under

multiple tests to calculate its precision and its time of response to analyze the overall

performance. These tests were held on an Intel Core 2 Duo T6400 Processor machine

(with 2.0 GHz processing speed and 4GB of RAM). It’s important to mention that the

Scientific approach of
RSS Join Engine

Copyright © 2010-2011, eliematta.com. All rights reserved

8

experiments are also held locally: we saved on our hard drive two XML files that contain

RSS feeds and load them using our prototype.

A) Time of response

To analyze the time of response, we executed several tests.

In the first experience, we fixed the value of the threshold to 0.2 and we varied the size

of the xml files:

a) File1 size = 2.69KB (13 entries), File2 size = 3.97KB (15 entries)

b) File1size = 7.15KB (28 entries), File2 size = 10.3 KB (35 entries)

c) File1 size = 2.69KB (13 entries), File2 size = 7.15 KB (28 entries)

d) File1size = 7.15 KB (28 entries), File2 size = 3.97 KB (15 entries)

In the second step, we fixed the value of the threshold to 0.6 and we kept the files sizes

as mentioned before.

In our final step, we fixed the threshold value to 0.8 and also we kept the file sizes as

mentioned. The results are shown in the following figure:

Figure 3: Time of response

B) Precision

To analyze the precision and efficiency of the join function in our project, we also did

several tests.

0

20

40

60

80

100

120

140

160

13 - 15 28 - 35 13 - 28 28 - 15

0.2

0.6

0.8S
e

c
o

n
d

s
 (

s
)

Number of entries

Scientific approach of
RSS Join Engine

Copyright © 2010-2011, eliematta.com. All rights reserved

9

In the second experience, we fixed the value of the threshold to 0.1 (Disjointness) and

we varied the size of the xml files (number of entries):

a) File1 size = 2.69KB (13 entries), File2 size = 3.97KB (15 entries)

b) File1size = 7.15KB (28 entries), File2 size = 10.3 KB (35 entries)

c) File1 size = 2.69KB (13 entries), File2 size = 7.15 KB (28 entries)

d) File1size = 7.15 KB (28 entries), File2 size = 3.97 KB (15 entries)

In the second step, we fixed the value of the threshold to 0.5 (Intersection) and we kept

the files sizes as mentioned before.

In our final step, we fixed the threshold value to 0.9 (Equality) and also we kept the file

sizes as mentioned. The results are shown in the following figure:

Figure 4: Precision chart

55.. CCoonncclluussiioonn

In this paper, we conducted a research of measuring semantic relatedness between

RSS items. We have detected several ways for computing this relatedness such as

word similarity, text similarity and string similarity to obtain one of the four existing

semantic relations : disjointness, intersection, inclusion and equality which represents

the basic result of our joining process prototype.

As a result of our conducted experiments based on time of response and precision, we

concluded from figure 3 that no matter what was the threshold value, the time of

response is identical which is abnormal because it should vary with the threshold value

proportionally. But on the other hand the precision of our project was a big success

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

13 - 15 28 - 35 13 - 28 28 - 15

0.9

0.5

0.1

P
e

rc
e
n

ta
g

e
 (

%
)

Number of entries

Scientific approach of
RSS Join Engine

Copyright © 2010-2011, eliematta.com. All rights reserved

10

because on a threshold value equals 0.9 as shown in figure 4 we found that the

precision was approximately 100% which is the output that we were expecting.

As a closure for this study, we still need to find a solution to reduce the time of response

in order to make it acceptable w.r.t the human scale, and extend the join process to

cover the description element of the RSS feeds; these ideas and issues will be

discussed in our next paper.

Scientific approach of
RSS Join Engine

Copyright © 2010-2011, eliematta.com. All rights reserved

11

RReeffeerreenncceess

1. Overview of the Scientific Method.

http://www.sciencebuddies.org/mentoring/project_scientific_method.shtml

2. Getahun, F., Tekli, J., Chbeir, R., Viviani, M., Yétongnon, K., Relating RSS

News/Items. ICWE 442-452 (2009)

3. Islam, A., Inkpen, D., Semantic text similarity using corpus-based word similarity and

string similarity, ACM Transactions on Knowledge Discovery from Data (TKDD), v.2 n.2,

p.1-25, (2008)

4. Getahun, F., Tekli, J., Chbeir, R., Viviani, M., Yetongnon, K., Semantic-based

Merging of RSS Items, WWW: Internet and Web Information Systems Journal Special

Issue: Human-Centered Web Science, Springer Netherlands, Vol. 12 (No. 11280)

(2009)

5. Golab, L., Özsu, M., Processing sliding window multi-joins in continuous queries over

data streams, Proceedings of the 29th international conference on Very large data

bases, p.500-511, Berlin, Germany (2003)

6. Derezińska, A., Małek, T., Unified Automatic Testing of a GUI Applications' Family on

an Example of RSS Aggregators, Proceedings of the International Multiconference on

Computer Science and Information Technology, pp. 549 – 559, ISSN 1896-7094 (2006)

7. A directory of RSS Aggregators. http://www.aggcompare.com

